Direct observation of structurally encoded metal discrimination and ether bond formation in a heterodinuclear metalloprotein.

نویسندگان

  • Julia J Griese
  • Katarina Roos
  • Nicholas Cox
  • Hannah S Shafaat
  • Rui M M Branca
  • Janne Lehtiö
  • Astrid Gräslund
  • Wolfgang Lubitz
  • Per E M Siegbahn
  • Martin Högbom
چکیده

Although metallocofactors are ubiquitous in enzyme catalysis, how metal binding specificity arises remains poorly understood, especially in the case of metals with similar primary ligand preferences such as manganese and iron. The biochemical selection of manganese over iron presents a particularly intricate problem because manganese is generally present in cells at a lower concentration than iron, while also having a lower predicted complex stability according to the Irving-Williams series (Mn(II) < Fe(II) < Ni(II) < Co(II) < Cu(II) > Zn(II)). Here we show that a heterodinuclear Mn/Fe cofactor with the same primary protein ligands in both metal sites self-assembles from Mn(II) and Fe(II) in vitro, thus diverging from the Irving-Williams series without requiring auxiliary factors such as metallochaperones. Crystallographic, spectroscopic, and computational data demonstrate that one of the two metal sites preferentially binds Fe(II) over Mn(II) as expected, whereas the other site is nonspecific, binding equal amounts of both metals in the absence of oxygen. Oxygen exposure results in further accumulation of the Mn/Fe cofactor, indicating that cofactor assembly is at least a two-step process governed by both the intrinsic metal specificity of the protein scaffold and additional effects exerted during oxygen binding or activation. We further show that the mixed-metal cofactor catalyzes a two-electron oxidation of the protein scaffold, yielding a tyrosine-valine ether cross-link. Theoretical modeling of the reaction by density functional theory suggests a multistep mechanism including a valyl radical intermediate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Analysis of Theoretical Charge Density of Alkali Metal Cations (LC, Na+, le)ICrown Ether (18e6) Complexes

The DO1(18c6)fi (MwLi. Na. K and I 8c6=18-crown-6) complexes have been chosen as the model systems toinvestigate the nature of chemical bonds between alkali metal cations and large mffitidentaie orgmnic ligands.The B3LYP/6-3I+G(d,p) level of calculation has been used for obtaining equilibrium geernetnes and p(r)functions (electron density distributions). By the aid of fundamental physical theor...

متن کامل

بررسی اثر پخت مکرر پرسلن بر مقاومت باند در دو نوع آلیاژ بیس متال (مینالوکس و وراباند 2)

The formation of oxides on the surface of the metal are proven to contribute to the formation of strong bonding. However, The base metal alloys are expected to exhibit more oxidation than high gold alloys, increase in oxide layer thickness due to repeated firing in them can reduce the bond strength. The aim of this study was to compare the effect of repeated porcelain firing on the bond strengt...

متن کامل

Aberrant coordination geometries discovered in the most abundant metalloproteins

Metalloproteins bind and utilize metal ions for a variety of biological purposes. Due to the ubiquity of metalloprotein involvement throughout these processes across all domains of life, how proteins coordinate metal ions for different biochemical functions is of great relevance to understanding the implementation of these biological processes. Toward these ends, we have improved our methodolog...

متن کامل

The manganese ion of the heterodinuclear Mn/Fe cofactor in Chlamydia trachomatis ribonucleotide reductase R2c is located at metal position 1.

The essential catalytic radical of Class-I ribonucleotide reductase is generated and delivered by protein R2, carrying a dinuclear metal cofactor. A new R2 subclass, R2c, prototyped by the Chlamydia trachomatis protein was recently discovered. This protein carries an oxygen-activating heterodinuclear Mn(II)/Fe(II) metal cofactor and generates a radical-equivalent Mn(IV)/Fe(III) oxidation state ...

متن کامل

Use of semi empirical method for determination of the activation energy of thermal decomposition of vinyl ethers

In this research, a semi empirical approach has been suggested for calculating the activation energyof unimolecular thermal decomposition of vinyl ethers yielding saturated products. The calculationprocedure is based on the use of molecular mechanics (MM) methods. These methods which involvethe construction of the transition state for a molecule mainly consider the formation of a “HydrogenBridg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 110 43  شماره 

صفحات  -

تاریخ انتشار 2013